
COMS 6998: Randomness in Computing Sep 24, 2012

Perfect Hashing and Chebyshev’s Inequality

Instructor:Xi Chen Scribes:Clément Canonne

1 Perfect Hashing

1.1 Last week

Remember the definition of a t-universal hashing family, for a given universe U (set of elements):

Definition 1 (Universal hashing family). A family H of functions from U to [t] is said to be a t-universal
hashing family if, for any two distinct elements k, k′ ∈ U , P{h(k) = h(k′) } ≤ 1

t , when h is drawn
uniformly at random from H.

Let S = {k1, . . . kn} ⊂ U be a set of keys: we are interested in testing membership to S. Last week, we
proved the following lemma, where Hm denotes a m-universal hashing family:

Lemma 2. If h ∈ Hm is picked uniformly at random, where m = 2
(n

2
)
, the probability that no two keys

from S collide is at least 1
2 .

Problem: this is not good enough, as we need H to have size quadratic on n, to achieve only a probability
of success 1

2 .

1.2 New attempt: two-layer scheme

We start with a table of size 2n, and draw a hash function h ∼ H2n uniformly at random. Let Vi be the
set of keys that h assigns to slot i, and ti = |Vi| (note that

∑2n
j=1 tj = n). Assume we have the following

requirement for the integers (tj)1≤j≤2n:(
t1
2

)
+
(
t2
2

)
+ · · ·+

(
t2n
2

)
≤ n (1)

then the two-layer hashing scheme illustrated below only requires linear space O(n). This scheme first
maps ki (1 ≤ i ≤ n) to a slot Vj (j in {1, . . . , 2n}) according to h, and computes the number ti of elements
each slot Vi contains. If (1) is not satisfied, it samples another h ∼ H2n and start over; otherwise, for
each slot Vj , it finds another hash function hi ∼ Hmi , with mi = 2

(ti
2
)
:
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Proof. To see why (1) holds with high (constant) probability for the function h picked at the first step,

let us define Xij =

1 if h(ki) = h(kj)
0 otherwise

. Then,

E
∑
ij

Xij︸ ︷︷ ︸
E
∑2n

i=1 (ti
2 )

=
∑
ij

EXij ≤
(
n

2

)
1

2n <
n

4

It follows that, with Markov’s inequality, P
{∑2n

i=1
(ti

2
)
> n

}
< 1

4 .

We still need to show that for each i ∈ [2n], by picking hi from Hmi uniformly at random, there is,
whp, no conflict between keys in Vi. This was proved in the last lecture that if mi is set to be 2

(ti
2
)
,

hi induces no collision with probability at least 1/2. As a result, we can draw randomly an h1 from
Hm1 , check if there is any collision between keys in V1. If so, draw a hash function from Hm1 again. In
expectation we only need to try twice in order to find an h1 that induces no collision between keys in V1.
Then we move to V2 and find a hash function h2, so on and so forth until we find a hash function hi for
every i ∈ [2n]. Using Markov’s inequality, it can be shown that with probability at least 1/2, the total
hash functions we draw is at most 8n. It follows that such a two-level hash table can, with high constant
probability, be constructed efficiently.

2 Variance and (new) concentration inequalities

Definition 3 (Moments and variance). Let X be a r.v., and k ∈ N. Then, whenever this expectation is
defined, the kth moment of X is the quantity EXk.
The variance of X is then defined as VarX = E

[
(X − EX)2] = EX2− (EX)2, and its standard deviation

as std(X) =
√

VarX.

The variance of a random variable measures how it varies around its expectation; the more it is, the more
the random variable usually deviates from its mean – for instance, a r.v. with variance 0 is almost surely
constant.
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2.1 Applications to concentration inequalities

We are interested in bounding the tail probabilities, that is, for t > 0, the quantities

P{X > EX + t } P{X < EX − t } P{ |X − EX| > t }

Theorem 4 (Chebyshev’s Inequality). If X is a r.v., such that VarX is well-defined, then, ∀t > 0,

P{ |X − EX| > t } ≤ VarX
t2

Proof. Define the r.v. Y = (X − EX)2: we have EY = VarX, and

P{ |X − EX| > t } = P
{√

Y > t
}

= P
{
Y > t2

}
≤

(Markov)

EY
t2

= VarX
t2

2.2 Coupon Collector’s problem: beyond Markov’s loose bound

Recall we had EX =
∑n
i=1 EXi = n

(
1 + 1

2 + · · ·+ 1
n

)
= nHn, where Hn denotes the harmonic series

(Hn = lnn+ γ + o(1)), and X is the random variable which takes as value the number of draws before
having seen at least once every number from 1 to n.
Markov’s inequality gives

P{X > 2nHn } <
1
2 (2)

which is not very tight. Let us apply Chebyshev’s inequality – for this, we first need to compute VarX.

Linearity of variance? It would be great if, by chance, it happened that VarX = Var
∑n
i=1Xi =(?)

∑n
i=1 VarXi.

Unfortunately, the variance is not linear in general: Var(X + Y ) 6= VarX + VarY . However, it is true
under some additional assumption:

Theorem 5. Suppose X, Y are two independent random variables. Then,

Var(X + Y ) = VarX + VarY

In general, if (Xj)1≤j≤m is a family of pairwise independent r.v., then Var
∑n
i=1Xi =

∑n
i=1 VarXi.

Proof. Suppose X, Y are two r.v. for which the variance is defined, and with expectations respectively
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µX , µY . Then,

Var(X + Y ) = E
[
(X + Y )2

]
− (E[X + Y ])2 =

(linearity)
E
[
X2
]

+ E
[
Y 2
]

+ 2E[XY ]− (EX + EY )2

= E
[
X2
]

+ E
[
Y 2
]

+ 2E[X]E[Y ]− µ2
X − µ2

Y − 2µXµY

= E
[
X2
]

+E
[
X2
]

+2µXµY − µ2
X −µ2

Y −2µXµY

= VarX + VarY

where we used the fact that if two r.v. are independent, the expectation of their product is the product of
their expectations.
By induction, the result extends to finite families of r.v.

Observation 6. The converse is not true: (Var(X + Y ) = VarX + VarY ) 6⇒ (X, Y independent).

Fact 7. If VarX is defined, then, for all λ ∈ R, Var(λX) = λ2 VarX.

Lemma 8 (Variance of a Geometric Law). Let X ∼ Geom(p), for some p ∈ (0, 1]. Then, VarX = 1−p
p2 .

Back to the coupon collector: recall that Xi ∼ Geom(pi), with pi = 1− i−1
n = n−i+1

n , and that the
Xi’s are pairwise independent. It follows that

VarX =
n∑
i=1

VarXi =
n∑
i=1

1− pi
p2
i

=
n∑
i=1

i− 1
n
· n2

(n− i+ 1)2 = n
n∑
i=1

i− 1
(n− i+ 1)2

= n
n∑
k=1

n− k
k2 = n2

n∑
k=1

1
k2 − n

n∑
k=1

1
k
≤ π

6n
2 − nHn (as

∞∑
k=1

1
k2 = π

6 )

Applying Chebyshev’s inequality, we get

P{X > 2nHn } <
π
6n

2 − nHn

4n2H2
n

= O
( 1

log2 n

)
(3)

If still not optimal, this is clearly a strong improvement over (2).

Direct approach towards a bound: following a “naive” approach here actually gives a tighter bound,
as we shall see. Let Ei be the event “the ith ball is never drawn in the first 2nHn rounds”. Clearly,

P{X > 2nHn } = P
n⋃
i=1

Ei ≤
Union
bound

n∑
i=1

PEi
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and

PEi =
(

1− 1
n

)2nHn

= eln(1− 1
n )·2nHn = exp− 2nHn

( 1
n

+ 1
2n2 + o

( 1
n2

))
= exp− 2 (lnn+ γ + o(1))

(
1 + 1

2n + o
( 1
n

))
= exp− 2 (lnn+ γ + o(1))

= 1
n2 e−2γ+o(1) ∼

n→∞
e−2γ

n2 = Θ
( 1
n2

)
Therefore,

P{X > 2nHn } ≤ n ·
1
n2 e−2γ+o(1) <

1
n

for n big enough. (4)

2.3 Two-point sampling

Suppose that, for some language L ∈ RP, we have an algorithm A such that (for some prime p):

• if x ∈ L, then, for at least half of the integers q from Zp, A(x, q) = 1;
• if x /∈ L, then, for all q ∈ Zp, A(x, q) = 0.

The goal is to amplify this 1
2 probability. An obvious way to do so would be as follows:

Draw uniformly at random q1, . . . , qk from Zp
if ∃i ∈ [k], A(x, qi) = 1 then
return 1

else
return 0

end if

The probability of failure is then shrunk to at most 1
2k . However, this method is good only if we have

access to an unlimited supply of randomness (random numbers are “free”). What if we only have access
to two random a, b ∈ Zp?

Idea Run on A(x, ak + b), for several values of k.
;Problem: the (ak+b)k are no longer independent! That is, they are not mutually independent. . . however,
it is easy to see that they remain pairwise independent. As we shall see, this is enough:

Define Xk = 1{ak+b is a witness} and X =
∑t
k=1Xk, where q ∈ Zp is said to be a witness for x if A(x, q) = 1.

By assumption, P{Xk = 1 } ≥ 1
2 , and we also have VarXk = P{Xk = 1 } (1−P{Xk = 1 }) ≤ 1

4 . Therefore,
by pairwise independence, VarX = Var

∑t
k=1Xk ≤ t

4 , and applying Chebyshev’s inequality yields

P{X = 0 } ≤ P{ |X − EX| ≥ EX } ≤ t/4
(t/2)2 = 1

t

Therefore, after t runs of the algorithms, we reduced the one-sided probability of failure from 1
2 to 1

t (not
as good as the exponential improvement for truly independent qi’s, but already a huge boost).
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3 Randomized median algorithm

Here is described an algorithm with, on input elements a1, . . . , an from an ordered set, finds the median of
the ai’s with probability 1− o(1) and running time 2n+ o(n). Even better, the algorithm is guaranteed
to return either the correct answer, or FAIL.

Idea let S be a string of size |S| = n (for convenience, we assume all elements from S are distinct).
First, we sample n3/4 elements from S, uniformly at random with replacement: this defines a (multi)set
R. With high probability, the median of this sample R will be “close” to the real median. More
precisely:

Draw R by sampling independently n3/4 elements from U(S) (uniform distribution)
Let ` be the (1

2n
3/4 −

√
n)th smallest element in R {can be found in time o(n), e.g. by sorting R}

Let r be the (1
2n

3/4 +
√
n)th smallest element in R

Compare ` with all elements from S to compute rankS(`) {n− 1 comparisons}
Compare r with all elements from S to compute rankS(r) {n− 1 comparisons}
Define C = { a ∈ S | ` ≤ a ≤ r }
if rankS(`) > n

2 then
return FAIL {Event E1}

else if rankS(r) < n
2 then

return FAIL {Event E2}
else if |C| > 4n3/4 then
return FAIL {Event E3}

else
Find the (n2 − rankS(`))th element m̂ in C {e.g. by sorting C: still o(n)-time}
return m̂

end if

Probability of failure By an union bound, P{FAIL } ≤ PE1 + PE2 + PE3. We bound each term
separately (hereafter, med(S) will be used to denote the true median of S):

• First, observe that PE1 ≤ P
{

#(samples < med(S)) ≤ 1
2n

3/4 −
√
n
}
. Form = n

3
4 , defineX1, . . . , Xm,

where Xi = 1{ith sample < med(S)}. By definition, linearity and independence,

P{Xi = 1 } = 1
2 , VarXi = 1

4 , E
m∑
i=1

Xi = m

2 and Var
m∑
i=1

Xi = m

4

Hence,

PE1 ≤ P
{

m∑
i=1

Xi <
m

2 −
√
n

}
≤ P

{ ∣∣∣∣∣
m∑
i=1

Xi − E
m∑
i=1

Xi

∣∣∣∣∣ > √n
}

≤
(Chebyshev)

m

4
√
n

2 = 1
4n1/4 (5)

• Similarly,
PE2 ≤

1
4n1/4 (6)
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• As E3 = {more than 4m points from S fall in {`, . . . , r}}, we have E3 ⊂ E1
3 ∪ E2

3 , where

E1
3 = {at least 2m points from S are > med(S) and fall in {`, . . . , r}}

E2
3 = {at least 2m points from S are < med(S) and fall in {`, . . . , r}}

(if med(S) /∈ {`, . . . , r}, in particular, we have either E1
3 or E2

3)

– Let d be the (n2 + 2m)th smallest point in the whole string S. Since E1
3 ⊆ {r ≥ d},

PE1
3 ≤ P

{
# (samples in {d, . . . ,maxS}) > m

2 −
√
n

}
≤ P

{ ∣∣∣∣∣
m∑
i

Yi − E
m∑
i=1

Yi

∣∣∣∣∣ > √n
}

≤
(Chebyshev)

m

4n = 1
4n1/4 (7)

where Yi is defined as the indicator r.v. 1{ith sample ∈{d,...,maxS}}.

– by symmetry, the same analysis applies to E2
3 .

Putting (5), (6) and (7) together, we end up with

P{FAIL } ≤ 1
4n1/4 + 1

4n1/4 + 2 · 1
4n1/4 = 1

n1/4 = o(1)
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